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One thing we are learning about this week is that SPT
(symmetry-protected topological) phases of matter are associated,
in some sense, to “anomalies.” A d-dimensional SPT phase is
gapped in bulk, but is not quite trivial. It is actually described at
long distances by what is called an “invertible” topological
quantum field theory T . Its partition function ZX on a closed
D = d + 1-dimensional manifold X is a complex number of
modulus 1. From this it follows that (a) there is an “inverse”
theory T −1 whose partition function is Z−1X , and the tensor
product T ⊗ T −1 is completely trivial; (b) on any spatial manifold
M without boundary, the space of physical states of theory T is
1-dimensional. (This contrasts notably with a fractional quantum
Hall system, for which the space of physical states on a compact
manifold has dimension > 1.)



What makes theory T nontrivial is that on a D-manifold X with
boundary, it is hard to make sense of ZX . To be more precise, this
cannot be done in a physically sensible way without adding some
new degrees of freedom on M = ∂X . In my lecture today, the new
degrees of freedom will usually be free fermions. But there are
additional and more subtle possibilities (including the possibility
that the boundary is gapped and topologically ordered).



If we are given a bulk theory T , what has to exist on the boundary
is not uniquely determined. The reason is that given any consistent
construction, we could always add on the boundary a completely
consistent d-dimensional theory S. The very fact that S is
consistent means that it can be added to any consistent theory
without spoiling the consistency. Another operation that we can
sometimes perform on a consistent theory is to add the the
Hamiltonian a relevant operator, possibly coupling what we added
in S to what we already had and removing some degrees of
freedom.



Thus there are two basic operations that connect the possible
boundary states of a given SPT phase T :



So a given SPT phase T in d dimensions has a lot of possible
boundary states. What they all have in common is that they are
not completely consistent, or do not have the expected
symmetries, by themselves. Rather, they are consistent and
symmetry-preserving in conjunction with the bulk theory T . In
some sense, the boundary theory of an SPT phase is “anomalous,”
the anomaly being measured precisely by the bulk theory T .



Although this qualitative picture is relatively well-established, I
think that its implementation for some of the most basic SPT
phases has not been completely well-understood. I have in mind
the examples that can be constructed from free fermions using
band theory, and whose boundary state consists of
d − 1-dimensional gapless fermions of some kind. The precise
sense in which the boundary fermions in these theories are
“anomalous” is rather subtle and has not been fully described. My
aim today will be to do this, focusing for examples on topological
insulators and superconductors in d = 2 or d = 3 dimensions.



We will have to describe “anomalies” in fermion path integrals in
more detail than is usually done. In doing this, I will focus on three
examples, which correspond to the three broad classes of fermion
theories. The three classes of theory are distinguished by how the
fermions transform under the symmetry group. By the “symmetry
group,” I mean the rotation group SO(D) in Euclidean signature,
or rather its double cover Spin(D), supplemented possibly by
time-reversal and/or reflection symmetries, and possibly by gauge
and/or global symmetries. Let us just schematically write K for
this full symmetry group.



Anyway there are three broad classes of theory, depending on
whether fermions transform in a (1) pseudoreal, (2) real, or (3)
complex representation of K . (Of course, it is also possible to
consider mixtures, in which some fermions transform in one type
and some in another.) The theories I will use to illustrate these
possibilities are (1) a 3d topological insulator or superconductor,
where we consider only orientable spacetimes; (2) a 2d topological
insulator; (3) a 3d topological superconductor or insulator, on
possibly unorientable spacetimes. As we will see, cases (1) and (2)
are more elementary and the topological invariants that we have to
use to understand those cases may be more familiar (at least in
case (1)). In a sense, case (3) is universal: if one understands case
(3), then (1) and (2) can be viewed as trivial special cases.
However, I think that a discussion that would start with case (3)
and view cases (1) and (2) as special cases would be rather delphic.



Here is another way to describe the three cases:

(1) A bare mass is possible for all fermions that is invariant under
the connected part of the symmetry group K , but it may violate
some discrete symmetry, such as T. If one doubles the spectrum, a
symmetry-preserving bare mass is possible.

(2) A fermion bare mass is not possible (even at the cost of
breaking T) unless one doubles the spectrum. If one doubles the
spectrum, a symmetry-preserving bare mass is possible.

(3) No bare mass is possible even after doubling the spectrum (or
taking any number of copies of it).



The example that I will consider first is the d = 3 topological
insulator, which is a T-invariant system (T =time-reversal) that
has on its boundary a 2 + 1-dimensional massless Dirac fermion ψ:

I =

∫
d3x ψi /Dψ

that couples to electromagnetism with charge −e, just like an
electron. (In fact, in band theory, ψ arises as a particular mode of
the electron.) The reason that ψ is massless is that a mass term
would violate T-symmetry. As I remarked last week, a massive
2-component fermion in 2 space dimensions(

i /D −m
)
ψ = 0

describes a single spin state of mass |m| and spin sign(m)/2. So
T-symmetry (or reflection symmetry) implies that m = 0. Hence if
we find a T-invariant material that has a single massless Dirac-like
mode ψ on its boundary, then this state of affairs is protected by
time-reversal symmetry.



By contrast, if there are two such modes ψ, ψ′, T-symmetry would
allow mass terms of equal magnitude and opposite signs for the
two modes, with T-symmetry exchanging them. So in 2 + 1
dimensions, there are two kinds of T-invariant insulators: those
that have an even number of massless fermions on the boundary
(generically none) and those that have an odd number (generically
1). The first kind is generically gapped in both bulk and boundary,
and so topologically trivial. The second kind is called the
topological insulator; it is ungapped on the boundary. That is the
case that we are going to study.



The partition function Zψ of the ψ field on a possibly curved
three-manifold M, coupled to a background electromagnetic
potential A, is formally the determinant of the Dirac operator:2

Zψ = det D, D = i /D = i
2∑

µ=0

γµDµ.

The Dirac operator is hermitian, so its eigenvalues are real:

Dψi = λiψi , λi ∈ R.

Formally the determinant is the product of eigenvalues:

Zψ =
∏
i

λi .



If we had two Dirac fermions, we would be interested in

Z 2
ψ =

∏
i

λ2i .

This is formally positive, since every factor is positive. Of course, it
needs some kind of regularization, such as Pauli-Villars

Z 2
ψ,reg =

∏
i

λ2i
λ2i + m2

for large m. This regularization (which is part of a more elaborate
procedure) preserves all symmetries and shows that the theory of
two Dirac fermions is completely consistent and
symmetry-preserving.



With one Dirac fermion, we have a bit of a problem, because Zψ is
naturally real but not naturally positive:

Zψ =
∏
i

λi .

All the factors are real, so it is reasonable to claim that Zψ should
be real, but there is no natural way to define its sign. The sign is
roughly speaking the number of λi that are negative, mod 2, but
there are infinitely many negative λi , and no way to decide if the
number of negative ones is even or odd.



One could pick a particular metric and gauge field, say g = g0 and
A = A0, and, after picking a sign of Zψ for (A, g) = (A0, g0),
evolve the sign of Zψ continuously as a function of A and g . The
trouble is that if we do this, we run into a contradiction. Let φ be
a gauge transformation (or a combination of a gauge

transformation plus diffeomorphism). Let (Aφ0 , g
φ
0 ) be whatever

(A0, φ0) transform into under φ. It is always possible to

continuously interpolate from (A0, g0) to (Aφ0 , g
φ
0 ). One literally

introduces a real parameter s and sets

As = (1− s)A0 + sAφ0 , gs = (1− s)g0 + sgφ0 .

Then one evolves (A, g) continuously in s from s = 0 to s = 1 and
counts how many times Zψ changes sign. If it changes sign an odd
number of times, that is our anomaly.



It is possible to have such an anomaly because when s is varied
from 0 to 1, the spectrum of the Dirac operator D = i /D can
undergo a nontrivial “spectral flow.”

Note that this is possible only because D has infinitely many
positive and negative eigenvalues.



In the particular case of boundary fermions of the 3d topological
insulator, there definitely is such an inconsistency in the sign of
det D, which therefore cannot be defined as a real number. I would
like to mention though that even if there is no such inconsistency
in the sign of det D on a particular M, we are not out of the
woods. The absence of an anomaly in the sign of det D means
that on a particular M, the sign is well-defined as a function of
(A, g), up to an overall sign that depends on M but not on (A, g).
However, we should certainly not expect to get a satisfactory
theory if we define the sign of det D independently for each M.
Physically, there must be a sensible behavior under various cutting
and pasting operations in which various three-manifolds Mi are cut
in pieces and glued together in different ways.



In examples relevant to topological states of matter – a good
example being the 3d topological superconductor – even if there is
no anomaly in the traditional sense of an inconsistency in defining
the path integral on a specific M, there can be an anomaly in the
more subtle sense that there is no satisfactory way to define overall
signs or phases of the path integral on different M’s. One needs to
take these more subtle anomalies into account as part of the
paradigm

“Anomalies in d − 1 dimensions←→ SPT phases in d dimensions.”

Taking these more subtle anomalies into account means trying to
give an absolute definition of the phase of the path integral for
each M. That is what we will aim to do.



Anyway, going back to the 2 + 1-dimensional charged Dirac
fermion, the fact that there is a problem in defining the sign of
detD does not mean that the theory is inconsistent. It only means
that the theory cannot be quantized in a T- and R-invariant way
(R =reflection symmetry). After all, ψ could have a
gauge-invariant bare mass, which violates T- and R-symmetry but
otherwise is perfectly physically acceptable.



This means that at the cost of losing T- and R-symmetry, we can
regularize the theory by adding a Pauli-Villars regulator field χ,
which one can think of as a bosonic field that obeys a massive
Dirac equation (i /D −m)χ = 0. In Euclidean signature, the
regularized version of the path integral is

Zψ,reg =
∏
i

λi
λi + im

.

(A more complete description may involve additional bosonic and
fermionic regulator fields of different masses, to improve the
convergence of this product. The regularized path integral then is
well-defined for fixed m. One wants to then add local counterterms
to the action – multiplying Zψ,reg by some exp(−W (m,A, g)) such
that the limit m→∞ exists. This limit is the renormalized Zψ,ren

of the continuum quantum field theory. The necessary
counterterms are T- and R-conserving and need not concern us.)



We are really only concerned with the phase of the path integral.
From

Zψ,reg =
∏
i

λi
λi + im

we see that for large m > 0, each eigenvalue λ contributes i−1 or i
to the phase of Zψ, depending on sign(λ), so formally

Zψ = |Zψ| exp

(
− iπ

2

∑
i

sign(λi )

)
.

Thus
Zψ = |Zψ| exp (−iπη/2)

where η (the Atiyah-Patodi-Singer or APS η-invariant) is a
regularized version of the difference between the number of
positive and negative eigenvalues of D.



The precise regularization does not matter. The regularization
used originally by APS was

η = lim
s→0

∑
i

sign(λi )|λi |−s .



The formula
Zψ = |Zψ| exp (−iπη/2)

(Alvarez-Gaumé, Della Pietra, and Moore, 1985), together with
any standard regularization of |Zψ|, gives a satisfactory definition
of the partition function of the 3d Dirac fermion on any M, for any
A, g , with all desireable physical properties except T- and
R-symmetry. This failure of T- and R-symmetry is often called a
“parity anomaly.” The 3d charged Dirac fermion can be quantized,
but not in a T- and R-invariant way. The quantization gives a
gapless QFT that is perfectly unitary and Poincaré-invariant – and
even conformally-invariant – but is not T- or R-invariant.



Let me describe one aspect of the claim that the formula

Zψ = |Zψ| exp (−iπη/2)

is physically sensible. When an eigenvalue of D passes through 0,
the fermion path integral is supposed to change sign. This happens
in our formula because there is, of course, no sign change of |Zψ|,
but

η = lim
s→0

∑
i

sign(λi )|λi |−s

jumps by ±2 when an eigenvalue passes through 0, producing the
desired sign change. Changing the sign of the regulator mass in
this construction would have complex conjugated Zψ, so it is
better to write

Zψ = |Zψ| exp (∓iπη/2)

with the sign depending on the choice of regulator.



In the theory of the 3 + 1-dimensional topological insulator, it is
shown that on the surface of such a material, there appears the
2 + 1-dimensional Dirac fermion that we have been discussing.
The 2 + 1-dimensional Dirac fermion is not supposed to be T- and
R-conserving by itself, but the combination of the bulk physics of
the topological insulator with the boundary Dirac fermion is
claimed to be T- and R-conserving.



So let us discuss the bulk physics a little bit. In vacuum, we
describe the electromagnetic field by the Maxwell action

1

2e2

∫
d3xdt

(
~E 2 − ~B2

)
=

1

4e2

∫
d4x FµνF

µν .

In the presence of a material, all sorts of additional interactions
may be induced. For our present purposes, the important one is
the “θ-term”

Iθ = θP, P =
1

32π2

∫
d4xεµναβFµνFαβ.

P is called the “instanton number”; on a compact four-manifold X
without boundary, it is a topological invariant, in fact an integer.
A typical example with nonzero P is X = S2 × S2 with one
quantum of magnetic flux on each S2 factor. Because P is always
an integer and in quantum mechanics we only care about the value
of the action mod 2π, θ is an angle

θ ∼= θ + 2π,

usually called the “theta-angle.”



In the context of condensed matter physics, in a gapped system,
the effective action for the electromagnetic field is in general an
arbitrary linear combination of all possible gauge-invariant
interactions, constrained only by symmetries. So in particular, we
should expect Iθ to be present in the effective action whenever this
is allowed by symmetries. What symmetries would forbid Iθ? Iθ is
odd under T and R symmetry, so in a theory with neither T nor R
symmetry, one should expect θ to appear with a completely generic
coefficient.



What if T and/or R is a symmetry? These map θ → −θ, so
naively they would force θ = 0. But since θ ∼= θ + 2π, there are
really 2 different T- and R-conserving values of θ, namely 0 and π.
As shown by Hughes, Qi, and Zhang (2008), the 3d topological
insulator is a T-conserving material with θ = π.



Before specializing to the T-conserving case, let us discuss the
generic case of a material with θ 6= 0 and to begin with we assume
that the boundary is gapped.



Topological considerations are not important for what I am about
to say, and for the moment we can assume that everything is
topologically trivial, in which case

P =
1

32π2

∫
X
d4x εµναβFµνFαβ =

1

8π2

∫
X
d4x∂µ

(
εµναβAν∂αAβ

)
=

1

8π2

∫
M
d3x εναβAν∂αAβ.

Stokes’ Theorem was used in the last step. The right hand side is
CS(A)/2π, where

CS(A) =
1

4π

∫
d3xεµνλAµ∂νAλ

is the (2 + 1)d Chern-Simons interaction that we discussed last
week, so

Iθ =
θ

2π
CS(A).



Last week, we considered CS(A) as a possible interaction in a
purely 2d material, and we learned that its coefficient has to be an
integer k , which moreover (for a gapped system without
topological order) determines the Hall conductivity. In the present
context, however, we are not considering an abstract 2d material,
but the surface of a 3d material. We have just learned that in that
context, there is no reason for k to be quantized; instead the
effective value of k , namely

keff =
θ

2π

is never an integer except in the trivial case that θ = 0 mod 2πZ.
One can view this as a particularly elementary example of how the
boundary of a 3d system can have a property that is impossible for
a purely 2d system.



Now let us go back to the T- and/or R-invariant case. We are
expecting or hoping that θ = π will be T- and/or R-invariant, but
there is a problem: at θ = π the surface has a Hall conductivity of
1/2 and at the T- or R-conjugate value θ = −π, the surface Hall
conductivity is −1/2. Neither of these values is T- or R-invariant.

One in fact has to be very careful about the meaning of the claim
that θ = π is T- or R-invariant in the case that X has a boundary
(the only real case in condensed matter physics). The claim means
that the bulk physics of X is T- and R-invariant and that these
symmetries can be maintained by a suitable boundary state. But a
trivial gapped boundary state is not suitable. There has to be
something on the boundary.



If we just include in the path integral measure a factor

exp(±iπP) = exp

(
±iπ 1

32π2

∫
X
d4x εµναβFµνFαβ

)
,

then this definitely does not maintain T or R symmetry. On the
contrary, it leads to a Hall conductivity on the surface with
keff = ±1/2, as we have just discussed. In fact, T or R symmetry
implies that the path integral measure must be real in Euclidean
signature (but not necessarily positive) and the factor that I have
written most definitely does not have that property.



The simple boundary state of the topological insulator has gapless
Dirac fermions on the boundary and as I have explained they have
a T and R anomaly. Their partition function is

Zψ = |Zψ| exp (∓iπη/2) ,

as we have discussed. This is not T- or R-invariant, just as the
“bulk” factor exp(±iπP) is not. However, it turns out that, if one
adds to P a gravitational corection that I will schematically call
Â(R) ∼

∫
X trR ∧ R, the combination of these factors is real and

thus T- and R- conserving. In fact, by a formula of Atiyah, Patodi,
and Singer (APS):

exp (∓iπη/2) exp(±iπ(P − Â(R))) = (−1)ι,

where ι is an integer. Hence the complete path integral measure
after integrating out the boundary fermions is just

|Zψ| exp (∓iπη/2) exp(±iπ(P − Â(R))) = |Zψ|(−1)ι.

(In a related context involving string theory D-branes, this formula
was described by V. Mikhaylov and EW (2014).)



Postponing for a moment an explanation of the APS formula that I
used, let me just try to convey an idea of why the formula
|Zψ|(−1)ι for the path integral measure makes sense. An
“instanton” is a localized field with P = 1. In condensed matter
physics, we can, at least as a thought experiment, imagine a
situation in which electromagnetic instantons exist. We take space
to be R× S2 with the topological insulator filling R+ × S2. (S2

could be replaced by S1 × S1 or any other compact 2-manifold.)



So spacetime is Rtime × R× S2. We place one unit of magnetic
flux on S2, and choose a localized electric field on Rtime ×R+ with∫

Rtime×R+

F01
2π

= 1.

Overall this gives

1 = P̂ =
1

32π2

∫
Rtime×R×S2

d4x εµναβFµνFαβ.

Note that this is an integral over all of spacetime, in constrast to

P =
1

32π2

∫
X
d4x εµναβFµνFαβ,

which is an integral over the worldvolume X of the topological
insulator. When we move an instanton from far outside the
material to deep inside, P̂ is identically 1, but P increases from 0
to 1 as the instanton enters the topological insulator.



The claim that θ = 0 outside the topological insulator and θ = π
inside ought to mean that the path integral measure is positive
when the instanton is far outside X and negative when it is deep
inside. But T and R symmetry, which say that the path integral
measure is real, do not let us interpolate from positive to negative
values using a factor of constant modulus such as exp(±iπP).
Instead the factor

|Zψ|(−1)ι

has all the right properties. It is real. When the instanton is far
from the boundary of X , |Zψ| is positive and ι is 0 if the instanton
is far outside X and 1 if it is deep inside. The factor |Zψ|(−1)ι

varies smoothly from positive to negative values since (according
to the APS theorem) ι jumps from 0 to 1 at precisely the point
that Zψ vanishes (recall that this happens because the Dirac
operator D = i /D on the boundary has an eigenvalue that passes
through zero).



Finally a brief explanation of the APS theorem that I used. This is
an index theorem for the Dirac operator DX on a four-manifold X
with boundary. The D = 4 Dirac operator

DX = i
5∑

µ=1

γµDµ

anticommutes with the “chirality” operator

γ5 = γ1γ2γ3γ4.

(In contrast to last week, I use Euclidean signature + + ++ as this
is more natural for index theory.) So if

DXψ = λψ,

then
DX (γ5ψ) = −λγ5ψ

If λ 6= 0, then ψ and γ5ψ must be linearly independent.



The linear combinations ψ± = (1± γ5)ψ have opposite chirality
(γ5ψ± = ±ψ±) but the same eigenvalue of the “Hamiltonian”
H = D2

X :
Hψ± = λ2ψ±.

So at any eigenvalue except 0, H has equally many eigenvalues of
positive or negative chirality. But among the zero-modes of H,
there can be a “chiral asymmetry.” If n+ and n− are the
dimensions of the space of zero-modes of H with γ5 = 1 or −1,
then the “index” ι(DX ) is defined as

ι = n+ − n−.

It is a topological invariant, because of arguments similar to those
often given in discussions of topological states of matter: when
eigenvalues of H move to or from zero energy, they have to do so
in pairs consisting of two states of opposite chirality.



The usual Atiyah-Singer index theorem, in the case of U(1) gauge
theory on a four-manifold X without boundary, gives

ι = Â(R)− P.

The APS version of the index theorem governs the case that X has
a boundary. One has to use a slightly unusual boundary condition
because the obvious boundary condition that we discussed last
week (n · γψ| = ±ψ|, where n is the normal to the boundary)
would not let one define an index. APS found a boundary
condition that does enable one to define an index, and proved that
this index satisfies

ι = Â(R)− P − η

2
,

which is the formula that I used a few moments ago.



Now I want to explain this in reverse. In four dimensions, there is a
4d topological quantum field theory with U(1) symmetry, with the
property that its partition function on a closed four-dimensional
spin manifold, coupled to a U(1) gauge field A, is (−1)ι. (This is
the partition function of a topological field theory because the
Atiyah-Singer index theorem shows that ι is a cobordism invariant.)
However, it is hard to make sense of (−1)ι on a manifold X with
boundary. That is because there is no simple boundary condition
on the Dirac equation that enables one to define the index ι. With
APS boundary conditions, one can define the index ι, but it is not
a topological invariant. ι jumps by ±1 when an eigenvalue of the
Dirac operator DM on M = ∂X passes through 0.



So the theory whose partition function on a closed four-manifold is
(−1)ι does not have an elementary, gapped, symmetry-preserving
boundary state. But it does have a gapless symmetry-preserving
boundary state, with (2 + 1)d massless Dirac fermions on the
boundary, such that the partition function on a manifold with
boundary is

| det DM |(−1)ι.



But this question might puzzle you: What does a theory with
partition function (−1)ι have to do with a 3d topological
insulator? To make this link, we will use a characterization that
was explained last week: The phase transition between a trivial 3d
insulator and a topological one occurs when the mass m of a
(3+1)d charged Dirac fermion ψ passes through 0.



For simplicity let us suppose that ι > 0; then generically there are ι
zero modes of ψ+ (the positive chirality part of ψ). Their charge
conjugates are ι zero modes of ψ− (the adjoint of ψ+). At m = 0,
the partition function for X and A such that ι > 0 vanishes
because of 2ι fermion zero-modes. The action contains a term

−mψ−ψ+ − h.c.

so the path integral

Z ∼
∫

DψDψ exp
(
− · · ·+ mψ−ψ+ + . . .

)
is proportional to mι, with one factor of m needed to absorb each
pair of zero-modes. So if the path integral in this sector is positive
for (say) m > 0, then its sign for m < 0 is (−1)ι.



This completes what I will say about a 3d topological insulator.
Before getting into details, I want to give a preview concerning the
other cases of real or complex fermions. (My basic examples will be
a T-invariant 2d topological superconductor for real fermions and a
3d topological superconductor for complex fermions.) In each case
there is an invariant analogous to ι and a d + 1-dimensional TQFT
whose partition function is the exponential of this invariant. In
each case, the invariant in question cannot be defined as a
topological invariant on a manifold with boundary.



For real fermions, the invariant in question is the mod 2 index of
the Dirac operator, which I will call ζ, and for complex fermions,
the relevant invariant is a (d + 1)-dimensional η-invariant. The
partition function of the d + 1-dimensional theory is (−1)ζ or
exp(iπη) in the two cases.



As I have said, just like (−1)ι, the other invariants (−1)ζ or
exp(iπη) cannot be defined as topological invariants on a manifold
with boundary. That is why massless fermions on the boundary (or
something more sophisticated) are needed to define one of these
theories on a manifold with boundary.



Although (−1)ι, (−1)ζ , and exp(iπη) are not well-defined (as
topological invariants) on manifolds with boundary, when we add
the standard gapless fermions that exist on the boundaries of these
systems, the products

| det D|(−1)ι, | detD|(−1)ζ , and | det D| exp(iπη)

are all well-defined and physically sensible.



Just as in the example that we have already discussed, the fact
that only the product of the fermion path integral and the partition
function of a would-be bulk TQFT is well-defined means that the
fermions on the boundary are not consistent by themselves – the
fermion theory is anomalous. (In the case that involves the
η-invariant, an explicit computation illustrating the anomaly was
done by Hsieh, Cho, and Ryu arXiv:1503.01411.)



A few more comments: (1) The fact that the partition function of
a (2+1)d or (3+1)d topological superconductor on a closed
manifold is (−1)ζ or exp(iπη) can be proved the same way I
argued for (−1)ι in the case of a 3d topological insulator: Starting
with a trivial phase, one looks at the sign or phase that the path
integral acquires when an appropriate fermion mass term passes
through 0. (2) Actually, the formulas with (−1)ι or (−1)ζ can be
viewed as special cases of the formula exp(iπη). The formula with
exp(iπη) is universal and reduces to (−1)ι or (−1)ζ for pseudoreal
or real fermions. The reason that I do not present the subject this
way is that the special cases in which one can use ι or ζ instead of
η are important and are much simpler than the general case. (3)
The formula with exp(iπη) can be applied to better-understood
cases such as the quantum Hall effect. (4) The various formulas
with (−1)ι, (−1)ζ , and exp(iπη) are all elaborations on work on
global anomalies going back to the 1980’s.



Now I would like to discuss the case of real fermions, for example
the case of a T-invariant (2+1)d topological superconductor (in
which the boundary fermions are nonchiral real fermions in
dimension 1 + 1). The first step is to define the mod 2 index of the
Dirac operator.



For physicsts, I think the simplest explanation is this. Suppose that
we have a fermion theory in D dimensions. All I care about is that
there is some sort of fermion action

I =

∫
dDx (ψ,Dψ)

for some D. By fermi statistics, D is antisymmetric. (In general, in
Euclidean signature it has no reality or hermiticity properties.) The
canonical form of an antisymmetric matrix is block diagonal

0 a
−a 0

0 b
−b 0

0
0

0


with nondegenerate 2× 2 blocks and some zero-modes (3 in the
case shown).



From this it follows that the number of zero-modes is a topological
invariant mod 2, since as an antisymmetric operator D is varied,
zero-modes can only be removed (or added) in pairs. The number
of zero-modes mod 2 is a Z2-valued topological invariant ζ that is
called the mod 2 index of the operator D. I want to stress that
generically it is not the mod 2 reduction of a Z-valued invariant
such as an ordinary index of a chiral Dirac operator. (For example,
there is a nontrivial mod 2 index in D = 3, as we discuss shortly,
but there is no ordinary index in three dimensions.)



The example we will consider is a Majorana fermion in
D = d + 1 = 3 dimensions. It certainly has a Dirac action, so the
3d Dirac operator has a mod 2 index ζ. On an orientable
3-manifold X , this mod 2 index is always 0 because of a version of
Kramers doubling. However, it is in general not zero on an
unorientable 3-manifold (for example on S1 × K where K is a
Klein bottle).



There is a 3d TQFT whose partition function on a closed
3-manifold is (−1)ζ , but as I have indicated, this invariant cannot
be defined (as a topological invariant) on a manifold with
boundary. Anticipating that the problem can be cured by coupling
to massless Majorana fermions on the boundary, let us discuss the
path integral for D = 2 massless Majorana fermions.



In two dimensions, we only need two gamma matrices, and we can
pick them to be real 2× 2 matrices

γ1 = σ1, γ2 = σ3.

This means that the Dirac operator /D = γµDµ is real and
antisymmetric; the hermitian Dirac operator D = i /D is imaginary
and antisymmetric. Such an operator has equal and opposite
eigenvalues, since if Dψ = λψ, then Dψ∗ = −λψ∗.



On an orientable two-manifold M, there is a further doubling of
the spectrum because of a version of Kramers doubling. We set

γ =
1

2
εµνγ

µγν

and then the operation T : ψ → γψ∗ is an antiunitary operator,
obeying T 2 = −1, and commuting with D, so all eigenvalues of D
have even multiplicity. Because of T- and R-invariance, it makes
sense to define the 2d Majorana fermion on a possibly unorientable
2-manifold M. In this case, we cannot define γ and there is no
Kramers doubling.



The path integral of a Majorana fermion is naturally understood as
the Pfaffian (not determinant) of the antisymmetric Dirac operator
/D. The canonical form of an antisymmetric matrix U is

U =


0 λ1
−λ1 0

0 λ2
−λ2 0

. . .


where the λi are uniquely determined up to sign, and the Pfaffian is

Pf(U) =
∏
i

(±λi )

where I allow for the fact that the λi are defined up to sign.



In any system of real (Euclidean signature) fermions, the Pfaffian
Pf( /D) is naturally real, but there can be an anomaly in its sign
because of an odd number of pairs of eigenvalues passing through
0 as one goes around a loop in the space of fields:

(This picture is different from the one we had for pseudoreal
fermions and is possible even for an antisymmetric matrix of finite
rank.)



In the specific case of the D = 2 Majorana fermion, Kramers
doubling prevents this if we are on an orientable manifold M: the
spectrum is doubled, so there are always an even number of level
crossings. There is no anomaly in Pf( /D), and it is natural to
define this Pfaffian to be always positive. If M is unorientable,
there is no Kramers doubling, and there can be an anomaly: the
2d Majorana fermion is inconsistent on an unorientable 2-manifold.



By now you hopefully know what I am going to say. There is no
way to define the 2d Majorana fermion theory on a “bare”
(possibly unorientable) 2-manifold. (Even on an orientable
2-manifold, this partition function cannot be defined so as to be
invariant under orientation-reversing symmetries.) But the 2d
Majorana fermion can exist on a 2-manifold M that is the
boundary of a 3-manifold X that supports a T-invariant topological
superconductor. The partition function of the combined system is

|Pf( /D)|(−1)ζ .

Here ζ is defined with APS boundary conditions and jumps by ±1
precisely when a pair of eigenvalues of /D is passing through 0.



In view of the time, perhaps I should be brief with the case of a
topological superconductor with worldvolume dimension
D = (3 + 1) = 4. On an orientable four-manifold, the partition
function of this theory is (−1)ι, where ι is the index of the Dirac
operator (now coupled to only a Z2 gauge field). This is proved
exactly as I said for the topological insulator, by considering the
phase transition to the topologically nontrivial phase when a
fermion (now a neutral D = 4 Majorana fermion) passes through 0
mass. One can determine the answer the same way on a general
unorientable four-manifold X , but the answer can no longer be
expressed in terms of an index or a mod 2 index. Rather the
answer is exp(iπη). (This formula was guessed by Kapustin,
Thorngren, Turzillo, and Wang, arXiv:1406.7329, on the basis of
cobordism invariance.) In even dimensions, the APS index theorem
shows that η is a topological invariant and moreover in D = 4, one
can prove that exp(iπη) is in general an arbitrary 16th root of 1.
(It is exp(2πi/16) for X = RP4.) Thus there are 16 classes of
superconductor in D = 4.



You know the story by now: exp(iπη) is no longer a topological
invariant if X has a boundary, and likewise the path integral of
Majorana fermions on the D = 3 boundary of X is anomalous.
Moreover, in contrast to the other examples I have given, the
anomaly in their path integral is not simply a sign. It involves the
η-invariant, not the more simple invariants ι or ζ, via reasoning
that goes back to my old work relating global anomalies to the
η-invariant (“Global Gravitational Anomalies”, 1985) and an
important elaboration of that result that I call the Dai-Freed
theorem (hep-th/9405012). (These tools are very useful in string
theory, for example see EW, hep-th/9907041 for application to the
heterotic string.)



The upshot, as you should expect from what I have said so far, is
that the product

|Pf( /D)| exp(iπη)

is well-defined and physically sensible.

There is much more to say, and in particular I would have loved to
say something about the slightly delicate case ν = 8, which
actually arises in string theory. But this is as good a place to stop
as we are going to find.


